
XML Template (2015) [23.1.2015–3:48pm] [1–19]
//blrnas3.glyph.com/cenpro/ApplicationFiles/Journals/SAGE/3B2/LRTJ/Vol00000/150001/APPFile/SG-LRTJ150001.3d (LRT) [PREPRINTER
stage]

Memory and preferred colours and
the colour rendition of white light
sources
KAG Smet PhD and P Hanselaer PhD
Light and Lighting Laboratory, KU Leuven, Ghent, Belgium

Received 13 November 2014; Revised 19 December 2014; Accepted 26 December 2014

The application of memory and preferred colours to colour rendition evaluation of
white light sources is reviewed. Four metrics are discussed: Sanders’ preferred
colour index, Judd’s flattery index, Thornton’s colour preference index and
Smet’s memory colour rendition index. Following a review of the metrics
themselves, the paper continues with a discussion of their predictive performance
in terms of agreement with psychophysical data on visual appreciation and
naturalness perception. Their performance was also compared to that of several
other colour rendition metrics and the impact on the predictive performance of a
metric’s emphasis on chroma enhancement has been evaluated.

1. Introduction

Memory colours refer to the colours associated
with familiar objects in long-term memory, e.g.
the yellow of a ripe banana, and preferred
colours are the colours one would like (prefer)
objects to have. Memory colours were first
introduced by Hering in the late 19th century
who stated that we view the world through the
spectacles of memory.1 Since then, memory
colours and preferred colours have been stud-
ied by many researchers.2–25

Because of their potential use as an internal
reference, they have especially been of interest
to areas of colour research that involve
assessment of object colour appearance,
colour quality and colour reproduc-
tion3,5,9,15,20,25–28 and colour rendition of light
sources.21,29–33

This paper focuses on the area of colour
rendition evaluation based on memory and
preferred colours. More specifically, it shortly

reviews, in chronological order, Sanders’ pre-
ferred colour index Rp,

30 Judd’s flattery index
Rf,

29 Thornton’s colour preference index
(CPI)33 and Smet’s memory colour rendition
index Rm.

21,32 Finally, the ability of these and
several other metrics to predict subjective
aspects of colour rendition, such as visual
appreciation and naturalness, is discussed
based on visual data obtained from 17 psycho-
physical studies.31,34–49

For an overview of past and recent work on
colour rendition in general and a review of
some of the other colour rendition metrics,
the reader is referred to the literature.50–54 A
review of the work on memory and
preferred colours in general can be found in
Smet et al.55

2. Memory and preferred colour
rendition metrics

Memory and preferred colour rendition
metrics are based on the assumption that
the colour rendition or colour quality of a
light source improves when the colour of
familiar objects is rendered more closely to
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what is expected or preferred. The following
subsections review the four only existing
colour rendition metrics based on either
memory or preferred colours.

2.1. Sanders’ preferred colour index, Rp

In 1959, Sanders developed a colour ren-
dition metric based on preferred colours30

and colour tolerance ellipses obtained in a
series of psychophysical rating experiments.18

In the study, six familiar objects – ‘hand’,
‘face’, ‘tea’, ‘butter’, ‘potato chips’ and ‘beef-
steak’ – were investigated under adapting
illumination with chromaticities approxi-
mately corresponding to Commission
Internationale de l’Eclairage (CIE) illumin-
ants B and C. The objects were presented to a
group of observers in at least 20 different
colours, by illuminating them with light
composed of different ratios of blue, green
and pink light obtained from three pairs of
fluorescent light sources. The observers were
asked to rate the apparent colour on a five-
point scale: ‘good’, ‘fair to good’, ‘fair’, ‘fair

to unsatisfactory’ and ‘unsatisfactory’. For
calculation purposes, values of, respectively,
100, 75, 50, 25 and 0 have been assigned to
these ratings. For illustrative purposes, the
preferred colours and colour tolerance ellipses
obtained under illuminant B are shown in
Figure 1(a), and similar graphs for illuminant
C can be found in Sanders.18

Sanders evaluated colour rendition by
comparing the chromaticities of the six
familiar objects illuminated by the test
source and corrected by a Judd-type
(translational) chromatic adaptation trans-
form with their preferred chromaticities.

To reduce the error of the chromatic
adaptation, he selected either the illuminant
B or C preferred colour data sets, whichever
the test lamp chromaticity was closest to.
Practically, the comparison was made by first
calculating the subjective colour deviations
�S=r�, with �S the chromaticity difference
between the apparent object chromaticity
(x,y) and the preferred chromaticity (xe,ye)
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Figure 1 (a) Preferred colours and colour tolerance ellipses under illuminant B of the six familiar objects investigated
by Sanders. (b) Relationship between the colour deviation and experimentally determined colour rendition rating
(reproduced from Sanders18)
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and with r� the radius of the tolerance ellipses
in the same direction

�S=r� ¼ g11ðx� xeÞ
2
þ g22ð y� yeÞ

2

þ 2g12ðx� xeÞð y� yeÞ
ð1Þ

The parameters gij (published in Sanders30)
determine the size, shape and orientation of
the experimentally determined tolerance
ellipses.

Finally, as the unsuitability of an object
colour is not necessarily proportional to the
subjective colour deviation, Sanders rescaled
it using the empirically derived relationship
between the subjective colour deviations and
the colour rendition ratings obtained in his
experiments (see Figure 1(b)). However, to
assign a value of 85 to illuminant B, �S=r�
has to be divided by 2.06 prior to rescaling.
A general colour rendition index is then
defined as the average of the results of the
six familiar objects. Unfortunately, the latter
only span the yellow-red region of colour
space which may, as acknowledged by
Sanders, result in high scores for light sources
that render blues, greens and magentas poorly
(and vice versa). More details can be found in
Sanders’ 1959 papers.18,30

2.2. Judd’s flattery index, Rf

In 1967, Judd proposed his flattery index,
Rf, as a supplement to the CIE colour
rendering index,56,57 because of concerns
that the CIE ‘‘color rendering index of a light
source may correlate poorly with public pref-
erence of the source for general lighting
purposes’’.29

Although Judd’s flattery index is based on
memory and preferred colours, it does not use
actual memory and preferred chromaticity of
familiar objects as reference. Instead, it
closely follows the calculation scheme of
the CIE colour rendering index, but corrects
the chromaticities of a number of Munsell
samples (CIE test samples 1–8, 13 and 14)
illuminated by the reference illuminant with a

preferred chromaticity shift. The latter were
obtained from the memory and preferred
colour data obtained by Bartleson,2

Sanders18 and Newhall et al.58 Judd states
that although the preferred shifts ‘‘refer to
natural overcast sky light and to artificial
illuminants (such as CIE source C) intended to
approximate it’’,29 they could also be used for
light sources with correlated colour tempera-
tures of 3500K and higher. For sources with
lower correlated colour temperatures (CCTs),
suitable adjustments would probably be
required.29 The preferred chromaticity shifts
are illustrated in Figure 2. As can be seen, the
preferred chroma shifts are generally in the
direction of increased saturation.

It may be noted that the calculation scheme
of the CIE colour rendering index as pro-
posed in the 1960s56,57 is slightly different
from the current CIE colour rendering index
standardized in 1974.59 One of the differences
is that the latter incorporates a von Kries-type
chromatic adaptation transform, while Judd’s
flattery index, as proposed in his 1967 paper,
uses a translational or Judd-type chromatic
adaptation transform to account for any
difference in chromaticity between the test
source and its reference illuminant.
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Figure 2 Judd’s preferred chromaticity shift (full mag-
nitude) for the Munsell samples # 1–8, 13 and 14
(reproduced from Judd29)
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Judd’s flattery index, Rf, is calculated as

Rf ¼ 100� 4:6�Ef,k ð2Þ

with �Ef,k the weighted arithmetic mean of
the chromaticity differences between the
chromaticity of the 10 Munsell samples
illuminated by the test source and their
chromaticity under the reference illuminant,
corrected by one-fifth of the preferred chro-
maticity shift. Judd kept the 4.6 scaling factor
of the CIE colour rendering index but used
only one-fifth of the calculated preferred
chromaticity shift to assign a value of 90 to
the reference illuminant. Light sources can
therefore score higher than their reference
illuminants, i.e. reference illuminants are not
optimal, but not higher than 100. Finally,
chromaticity is calculated in the CIE 1960
uniform colour space. For further details, the
reader is referred to Judd’s 1967 paper.29

2.3. Thornton’s preference index, CPI
With the exception of a few differences, the

CPI33 proposed by Thornton in 1974 is very
similar to Judd’s flattery index. Like Judd’s
index, it does not use actual memory or
preferred colours, but instead corrects the
chromaticity of a number of Munsell samples
illuminated by the reference illuminant.
Thornton’s CPI uses only the first eight
Munsell samples and also keeps the original
magnitude of the preferred chromaticity shift
calculated by Judd.29 In addition, Thornton
weighted all samples equally. Finally, the
maximum preference score of a light source
is 156 and illuminant D65 was assigned a
value of 100. Thornton’s CPI is calculated as
follows

CPI ¼ 156� 7:18�E ð3Þ

where �E is the arithmetic mean of the colour
shift in the CIE 1960 uniform colour space.

2.4. Smet’s memory colour rendition index,

Rm or MCRI

The memory colour rendition index, Rm

(also known as MCRI) is a memory colour
metric that assesses a light source’s colour
rendition by comparing the rendered colours
of a number of familiar objects to their actual
memory colours using empirically derived
similarity functions. The latter describe the
psychophysical response to a chromaticity
deviation from the memory colour, implicitly
taking potential differences in chroma and
hue tolerance into account.

Memory colours and associated similarity
functions of 10 familiar objects with good
hue coverage (‘green apple’, ‘ripe banana’,
‘orange’, ‘dried lavender’, ‘smurf�’, ‘straw-
berry yoghurt’, ‘sliced cucumber’, ‘cauli-
flower’, ‘Caucasian skin’ and ‘neutral gray’)
were derived from observer ratings obtained
in visual experiments.60 Each familiar object
was presented in over 100 different chromati-
cities (with approximately constant lumi-
nance) to a panel of 32 colour normal
observers. The observers had to rate the
apparent object colour, on a five-point scale
(‘1: very bad’, ‘2: bad’, ‘3: neutral’, ‘4: good’,
‘5: very good’), with reference to what they
imagine the object looks like in reality. The
apparent colour was changed by altering the
luminous flux of the R(ed) G(reen) B(lue)
A(mber) light-emitting-diodes (LED) illumi-
nating them while hiding all clues to the
colour of the illumination. The observer
adaptation state was kept approximately
constant by presenting the object in front of
a self-luminous back panel with a CCT of
5600K.

For each object a similarity function was
obtained by normalizing the bivariateGaussian
model fitted to the observer ratings.21,32 For
illustrative purposes the Gaussian rating model
for a ‘green apple’ is shown in Figure 3(a).
Cross-sections of the similarity functions
corresponding to a unit Mahalanobis distance
(1d-contours) are illustrated in Figure 3(b).
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For comparison, the typical object chromati-
city under D65 is also plotted.

Two important conclusions can be drawn
from Figure 3. One, the major axis of the
similarity functions is approximately orien-
tated along the chroma direction suggesting a
higher tolerance for deviations in chroma
than for hue. And two, compared to the
objects’ typical colour under daylight,
memory colours of most familiar objects
tend to be more saturated21 consistent with
reports in the literature.2,20,58,61 It might also
explain why light sources that increase object
gamut or saturation are, up to a point,
typically perceived to have better subjective
colour rendition quality (e.g. ‘preference’).

The memory colour rendition metric, Rm is
calculated as follows:

1) For each familiar object illuminated by
the test source, the 108 corresponding
chromaticity under D65 is calculated in
IPT62 colour space (PiTi). P and T are,
respectively, the red-green and yellow-blue
axis of the IPT colour space. Chromatic
adaptation is taken care of by the CAT02

transform as defined in CIECAM02,
whereby the degree of adaptation D is
determined by the luminance of the adap-
tation field. If unknown, a value of 0.90 is
recommended, as chromatic adaptation is
rarely complete, especially for light sources
having CCTs much different from
D65.63–65

2) The specific degree of similarity Si with the
memory colour of a familiar object is deter-
mined using the similarity function Si(P,T)

Si Pi,Tið Þ

¼ e�
1
2 ai,3 Pi�ai,1ð Þ

2
þ2ai,5 Pi�ai,1ð Þ Ti�ai,2ð Þþai,4 Ti,1�ai,2ð Þ

2
� �

� i¼ 1 . . .10ð Þ ð4Þ

with a1–a5 fitting parameters describing the
function’s centroid, shape, size and orienta-
tion. Note that the bracketed part is a non-
Euclidean distance measure – called a
Mahalanobis distance – that implicitly takes
differences in chroma and hue tolerances into
account.
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Figure 3 (a) The Gaussian rating model and mean observer ratings for an apple. (b) The 1d-elliptical contours of the
10 similarity functions. Centres are represented by (þ), the typical object chromaticity under D65 by (x)
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3) The general degree of similarity Sa is
obtained as the geometric mean of the Si

values.
4) The 0–1 range of the general Sa is rescaled

to a more familiar 0–100 range using a
sigmoid function

Rm ¼ 100 �
2

ep1 ln Sað Þj j
p2þ1

� �p3

ð5Þ

with the rescaling parameters p1–p3 such that
the CIE illuminants F4 and D65 have,
respectively, Rm values of 50 and 90 and
such that Sa50.5 corresponds to Rm� 0.

For a step-by-step overview with all
required equations and parameter values,
the reader is referred to Smet et al.66

3. Performance of colour
rendition metrics

The predictive performance of the memory
colour rendition metrics discussed earlier was
investigated. In addition to thememory colour-
based metrics, several other colour rendition
metrics have been included as well for com-
parison. These included both metrics specific-
ally designed to predict more subjective aspects
of colour rendition (naturalness, preference,
vividness, etc.), as well as so-called fidelity-type
metrics that attempt to provide an objective
measure of colour rendition with respect to a
broadband reference illuminant. Note that the
latter need not be optimal in terms of any of the
subjective aspects. Fidelity metrics are however
included to illustrate that they are indeed
unsuitable to predict colour rendition aspects
such as preference and naturalness.

The following colour rendition metrics
have been investigated:

(a) Preferred colour based: Sanders’
Preferred Colour Index Rp,

30 Judd’s
Flattery Index Rf

29 and Thornton’s
CPI.33

(b) Memory colour based: Smet’s Memory
Colour Rendition Index Rm or
(MRCI).21,32

(c) Colour fidelity based: the CIE Ra,
59

CRI2012 Ra,2012
67 and CQS Qf (v9.0)68

(CQS v9.0 is unpublished, but is almost
identical to v7.5 published in Davis and
Ohno.68 Calculations were performed
following the procedure outlined in an
Excel CQSv9.0 calculator distributed by
Dr Y. Ohno from the US National
Institute of Standard and Technology).

(d) Chroma enhancement/gamut-expansion
based: CQS (v9.0) Qp and CQS (v9.0)
Qg,

68 the feeling of contrast colour ren-
dering Index (FCI)69 and the Gamut Area
Index (GAI).70

(e) Other (e.g. mixed fidelity and chroma or
gamut based): CQS Qa (v9.0),68 and the
GAIRa, the geometric mean of the CIE Ra

and GAI.32

Performance of the colour rendition metrics
was assessed by a meta-analysis of the
Spearman correlation coefficients between
the metric predictions and the psychophysical
ratings of colour rendition obtained from
several studies in literature.31,34–49 A
Spearman rank correlation coefficient was
used as it does not make any assumptions
about the data. In addition, it provides a
measure of the ability of a metric to correctly
rank light sources. A metric with high
Pearson (but low Spearman) correlation
would be of no practical use.31 The 17 studies
have investigated one or more subjective
aspects of colour rendition. Twenty one
experiments were devoted to the study of
visual appreciation (preference and attract-
iveness)31,34–36,39–49 and 15 to natural-
ness.31,34,35,37–42,44,45,49 For each aspect a
meta-analysis was conducted.

As six visual experiments used object sets
that lacked full hue coverage (mostly blue to
magenta),34,35,41,48,49 possible bias due to
mismatch between the experiment object set
and a metric sample set30,31 was minimized by
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limiting the hue range of the latter to that of
the former prior to calculating the metric
scores. A similar approach was also used in
Smet et al.32,50 Finally, it may be noted that
the light sources in the psychophysical studies
had primarily CCTs of approximately
3000K, as it is generally much easier to find
an appropriate smooth broadband reference
light source (incandescent or halogen).

3.1. Statistical analyses

3.1.1. Meta-analysis and corrections for error
and artefacts

A meta-analysis is a statistical method to
estimate the true strength of association – in
this case the Spearman correlation – between
variables by combining data from several
studies and by, if possible, correcting for
sampling error and study artefacts. The meta-
analysis followed the method of Hunter–
Schmidt (HS), whereby the true correlation
is estimated by a weighted average
correlation.71

In a ‘bare-bones’ meta-analysis only the
sampling error or within-study variance is
corrected for and the weights are the number
of samples (N) in each study. However, other
types of error and study imperfections (called
artefacts) should be corrected for when pos-
sible, as they have a tendency to attenuate the
true correlation and typically also lead to an
underestimation of the true variance.

Note that, as stated by Hunter and
Schmidt,71 ‘‘the artifact attenuation is caused
by real imperfections in the study design. The
attenuation of the true correlation will thus
occur whether we can correct for it or not.’’

In the present analysis, the following errors
and artefacts were corrected for:

1) Sampling error (within-study variance)
2) Study heterogeneity (between-study vari-

ance): Accounted for by adjusting the
study weights from N to the optimal
weights 1/(�þN–1), with � the HS hetero-
geneity estimator.72

3) Range restriction/enhancement: When one
of the variables over which the correlation
is calculated has only values within a
limited range compared to the overall or
true range, the correlation tends to be
reduced. Hunter and Schmidt state that
‘‘correlations are directly comparable
across studies only if they are computed on
samples from populations with the same
standard deviation on the independent vari-
able’’.71 Therefore, range correction has
been applied with respect to the range
observed over all experiments. For each
study, the range restriction parameter ux
has been estimated as the ratio of the
standard deviation of the metric scores for
that study to that of the pooled metric
scores of all studies available.

4) Attenuation due to inter-rater idiosyncrasy
(halo): Inter-rater variability was treated
as measurement error and estimated as (1
– inter-rater STRESS/100), when avail-
able. When missing, inter-rater variability
was estimated as the mean of the studies
that did have that data. The mean inter-
rater STRESS across all studies was 25,
comparable to typical values obtained in
colour discrimination studies.73

5) Sample correlation bias: The sample cor-
relation r is a statistically biased estimator
of the population correlation � and was
corrected by the linear (r50.7) or non-
linear (r� 0.7) attenuation factor defined
in equations (3.26) and (3.27) in Hunter
and Schmidt.71

For an in-depth discussion on these correc-
tions and on meta-analysis in general, the
reader is referred to Hunter and Schmidt.71

3.1.2. Significance testing of metric cross-
comparisons

All metric performances were also cross-
compared. Statistical differences were deter-
mined using the confidence interval method
of Zou74 for dependent overlapping correl-
ations under the null hypothesis of equal cor-
rected average correlations, H0: rci� rcj ¼ 0
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(whereby i and j run over all metrics). A
typical significance level of �¼ 0.05 was
selected a priori. The method tests whether
the 100� (1–�)%-confidence interval (CI)
contains zero, in which case H0 cannot be
rejected.

3.1.3. Multidimensional scaling (MDS) analysis
To verify the results of the correlation

meta-analysis a MDS-based analysis was
conducted on the metric scores and the
visual ratings for each aspect of colour
rendition. The MDS attempts to find rela-
tionships in a set of data such that the
Euclidean distances between the objects in
the data set are preserved when represented in
a lower dimensional space. A similar analysis
has been done by Houser et al.51 on a set of
metrics scores of a large number of light
source spectra. However, they only took
metric scores into account, but no visual data.

In the present analysis, the MDS mini-
mized the stress of the distance matrix con-
taining the Euclidean distances between all
cross-compared scores (metric and visual
rating). Matrix stress is an indicator of how
poorly the distances between scores are
preserved when mapping to a lower dimen-
sional space. Values smaller than 0.2 are
considered a good mapping.51

In addition, the coefficient of variation
(R2), which quantifies the amount of variance
explained by the MDS mapping was also
calculated, as well as the relative contribution
of each MDS axis.

As the various metrics and ratings used
different scales, the metric scores and the
visual ratings for each study were trans-
formed to z-scores before applying the
MDS.51

After the MDS, the Euclidean distances
between the lower dimensional representation
of the metric scores and that of the visual
rating were determined. As smaller distances
indicate better agreement with the visual
rating, they can be used to verify and com-
plement the results of the correlation analysis.

The strength of the agreement between the
MDS derived metric-rating distances and
the metric correlation was quantified using
the Spearman correlation coefficient. Good
agreement testifies to the reliability of the
estimated metric performance and the con-
clusions drawn.

3.2. Results

3.2.1. Correlation meta-analysis and metric
performance comparisons

The weighted average artefact-corrected
Spearman correlation coefficients for the
different metrics with the visual appreciation
and naturalness ratings are presented in
Table 1. For comparison, the results of the
bare-bones analysis and the intermediate step-
by-step corrected average correlations are
also shown. For a quick and easy overview,
the final results obtained by applying all
corrections are also illustrated in Figure 4.

From Table 1, it is clear that the artefact
corrections had a de-attenuating effect for
almost all metrics, with the exception for the
correlation between the FCI and naturalness
(which was attenuated to correct for the
inflation due to range enhancement).

It is also clear (see also Figure 4) that the
metrics vary substantially in their predictive
performance. The statistical significance of
these differences in performance was deter-
mined in a series of cross-comparisons. The
CI-bound closest to zero, henceforth referred
to as CI0, of the CI tests on the correlation
difference (H0: rci� rcj ¼ 0) are summarized
in Table 2. When there is a statistically
significant difference, the CI0 has been
underlined.

3.2.2. MDS analysis
Finally, the results of the correlation meta-

analysis were verified using an analysis based
on a MDS of the metric scores and visual
ratings (see Figure 5). The mapping to a two-
dimensional space of the visual appreciation
and naturalness data resulted in excellent
distance matrix stress values of, respectively,
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Figure 4 Metric performance: The weighted average artefact-corrected Spearman correlation (with standard error)
between the metric predictions and the observer ratings for visual appreciation (red filled circles) and naturalness
(blue open squares) obtained in 21 and 15 experiments, respectively

Table 1 Metric performance: The weighted average (artefact-corrected) Spearman correlation coefficients rc for visual
appreciation and naturalness. The intermediate results when sequentially applying the artefact corrections are also
shown (bottom to top)

Applied corrections Visual appreciation

Ra Ra,2012 Qf Qa Qp Qg FCI GAI GAIRa Rp Rf CPI Rm

All 0.09 0.41 0.16 0.38 0.81 0.76 0.67 0.74 0.77 –0.26 0.57 0.77 1.00
2,3,4 0.06 0.34 0.12 0.32 0.78 0.71 0.61 0.68 0.74 –0.27 0.51 0.73 1.00
2,3 0.06 0.31 0.12 0.29 0.67 0.62 0.54 0.63 0.65 –0.23 0.44 0.63 0.90
2 0.02 0.30 0.11 0.29 0.67 0.62 0.53 0.50 0.47 –0.24 0.47 0.61 0.79
Bare-bones 0.02 0.33 0.13 0.31 0.67 0.62 0.56 0.51 0.47 –0.32 0.48 0.61 0.79

Applied corrections Naturalness

Ra Ra,2012 Qf Qa Qp Qg FCI GAI GAIRa Rp Rf CPI Rm

All 0.60 0.61 0.63 0.70 0.75 0.30 0.13 0.39 0.94 0.16 0.72 0.70 0.71
2,3,4 0.52 0.55 0.56 0.62 0.69 0.24 0.08 0.31 0.89 0.11 0.64 0.65 0.65
2,3 0.44 0.46 0.47 0.52 0.61 0.21 0.07 0.28 0.80 0.14 0.55 0.56 0.57
2 0.39 0.43 0.40 0.50 0.60 0.26 0.11 0.23 0.62 0.07 0.55 0.55 0.49
Bare-bones 0.36 0.43 0.38 0.50 0.60 0.30 0.20 0.26 0.61 –0.04 0.55 0.55 0.49
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0.045 and 0.060, and in excellent R2 values of
0.96 and 0.94, respectively.

In contrast to Houser et al.51 who inter-
preted the metric clustering in their MDS
analysis as falling along a preference and
discrimination or gamut axis, no such two
dimensional preference–discrimination struc-
ture was readily identifiable.

However, the first MDS axis already
accounted for, respectively, 82% and 80%
of the total variance of the MDS models for
visual appreciation and naturalness and was
approximately directed towards increasing
emphasis on chroma enhancement in the
metric calculation, as becomes clear from
Figure 5. Fidelity-type metrics are located

Table 2 Results for the cross-comparisons of metric performance (H0: rci� rcj ¼ 0). The values are the confi-
dence interval bound closest to zero. Underlined values signify statistically significant differences, i.e. zero was within
the confidence interval bounds. Results for visual appreciation and naturalness are, respectively, shown in the upper
and lower triangles of the table

Ra Ra,2012 Qf Qa Qp Qg FCI GAI GAIRa Rp Rf CPI Rm

Ra �0.19 0.01 �0.10 �0.45 �0.31 �0.13 �0.20 �0.42 0.01 �0.23 �0.33 �0.68
Ra,2012 �0.12 0.14 �0.13 �0.15 �0.02 0.13 0.10 �0.07 0.24 0.05 �0.03 �0.34
Qf �0.08 �0.13 �0.05 �0.36 �0.22 �0.06 �0.11 �0.32 0.05 �0.16 �0.25 �0.58
Qa �0.06 0.00 �0.08 �0.21 �0.07 0.09 0.05 �0.15 0.21 �0.04 �0.10 �0.39
Qp �0.27 �0.21 �0.31 �0.33 �0.13 �0.13 �0.24 �0.15 0.67 0.11 �0.10 �0.04
Qg 0.17 0.06 0.14 �0.01 �0.18 �0.06 �0.17 0.21 0.57 �0.04 0.10 �0.08
FCI 0.04 �0.07 0.00 �0.17 �0.26 �0.01 0.14 0.22 0.39 �0.20 0.14 �0.09
GAI 0.32 0.23 0.29 0.16 �0.02 �0.11 0.01 0.22 0.49 �0.18 0.21 �0.01
GAIRa �0.05 0.01 �0.09 �0.13 0.13 0.21 0.36 0.13 0.69 0.01 �0.21 �0.07
Rp 0.04 0.03 0.00 �0.05 �0.21 0.44 �0.62 0.38 �0.47 �0.41 �0.61 �0.94
Rf �0.17 �0.13 �0.20 �0.20 0.24 0.14 0.28 �0.04 0.06 0.11 0.01 �0.24
CPI �0.26 �0.20 �0.28 �0.30 �0.05 0.17 0.28 0.01 �0.04 0.12 0.16 �0.06
Rm �0.28 �0.21 �0.30 �0.32 0.09 0.19 0.30 0.02 �0.07 0.11 0.21 �0.13
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towards the left, gamut area metrics to the
right and the others (with saturated reference
chromaticities) in between. Furthermore,
the direction and interpretation of the first
axis is also clearly illustrated by the rank
order of the CQS Qf, Qa, Qp and Qg metrics
along this axis.

The relative positions along the first MDS
dimension of the naturalness and visual
appreciation data also indicate that accurate
predictions of the former would require less
emphasis on chroma enhancement in the
metric calculation than the latter. As shown
and discussed more in-depth in the next
section, this was also confirmed by the results
of the correlation meta-analysis.

With regard to the interpretation of the
MDS axes, also note that the preference–
discrimination MDS model of Houser et al.51

can be easily reinterpreted to be consistent
with the one above by a clockwise rotation of
their MDS diagram (see Figure 1 in Houser
et al.51) of approximately 608. As a bonus,
this would also make it consistent with their
interpretation of a second MDS analysis on
CCT-renormalized metrics, whereby the
second axis did not refer to ‘preference’
(see Figure 4 in Houser et al.51).

Getting back to the full two-dimensional
MDS model, it was found that metric clus-
tering is largely in agreement with the results
of the meta-analysis. For example, Qa and
Ra,2012 are close together, the same for Ra and
Qf. In addition, the former have a slightly
smaller metric-rating distance than the latter.
All of which is in qualitative agreement with
the metric correlation coefficients as can be
observed from Figure 4 and Table 1.
However, there are other metrics that do not
group together but which do show metric-
rating distances in qualitative agreement with
the magnitude of the correlation coefficients
of those metrics (e.g. FCI, Qg, Qp and GAI).

Ignoring structure issues, and focusing only
on the two-dimensional, metric-rating
distance, a comparison with the metric
correlation coefficients obtained in the meta-
analysis showed a good overall agreement
between the two analysis approaches (see
Figure 6).

The magnitudes of the Spearman correl-
ation coefficients between the two approaches
to analysis were 0.96 and 0.88 for visual
appreciation and naturalness, respectively.
The small discrepancy between the two
methods for a few metrics is either due to

−0.40 −0.20 0.00 0.20 0.40 0.60 0.80 1.00 1.20 
0.0 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

7.0 

8.0 

9.0 

10.0 

R
a

R
a,2012

Q
f

Q
a

Q
pQ

g

FCI

GAI

GAIR
a

R
p

R
f

CPI

R
m

M
D

S
 b

as
ed

 m
et

ric
−

ra
tin

g 
2D

−
di

st
an

ce
 (

a.
u.

)

Spearman |r| = 0.96

−0.40 −0.20 0.00 0.20 0.40 0.60 0.80 1.00 1.20 
0.0 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

7.0 

8.0 

9.0 

10.0 

R
a

R
a,2012

Q
f

Q
a

Q
p

Q
g

FCI

GAI

GAIR
a

R
p

R
f

CPI

R
m

M
D

S
 b

as
ed

 m
et

ric
−

ra
tin

g 
2D

−
di

st
an

ce
 (

a.
u.

)

Spearman |r| = 0.88

Visual appreciation Naturalness

metric metric
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the MDS analysis being directly based on the
raw (unweighted and uncorrected) index
values and observer ratings, which makes it
a rougher and slightly less accurate estimator
of the true metric performance; or because the
use of ranks in the Spearman correlation
ignores the magnitude of the differences
between metric and rating values. Whatever
the reason, the high correlation between the
two methods testifies to the overall reliability
of the estimated relative metric performances
using either method.

3.3. Discussion

In this section the results presented in the
preceding section will be discussed, with the
emphasis on the correlation-based perform-
ance, because it also provides standard errors
on the average performance and hypothesis
tests for metric cross-comparisons. Note that
the use of the MDS metric-rating distance to
estimate performance would have resulted in
a qualitatively similar discussion.

As this is a review on memory and preferred
colours, the focus will be mainly on the results
for the metrics described in Section 2. Each
aspect of colour rendition will be discussed in a
separate subsection.

3.3.1. Visual appreciation
For visual appreciation, Smet’s MCRI Rm

had the best performance, according to the
MDS analysis as well as the corrected and
uncorrected correlation coefficients obtained in
the meta-analysis. In fact, after artefact correc-
tion, the correlation with visual appreciation
was rc� 1SE (standard error)¼ 1.00� 0.03.
A high correlation (r¼ 0.88, uncorrected) had
been found before using a more limited set of
visual data.32,50 Applying the same corrections
to the correlation of Rm with the limited
visual data set gave rc� 1SE¼ 1.00� 0.04,
indicating the old and the new extended data
sets on visual appreciation are in good
agreement.

The results of the CI test confirmed that
the Rm metric was significantly (�¼ 0.05)

better than any of the other metrics investi-
gated although it should be noted that,
despite a quite substantial nominal difference
in correlation values, a significance difference
with the GAI was only just established. Other
metrics with larger, but still rather small CI0
values were the Qp and CPI metrics.

In contrast to the memory Rm index, the
three colour rendition metrics based on pre-
ferred colours – Sanders’s preferred colour
index, Judd’s flattery index and Thornton’s
CPI – showed, respectively, very poor
(rc� 1SE ¼–0.26� 0.17), poor-to-moderate
(rc� 1SE¼ 0.57� 0.11) and moderate-to-
good (rc� 1SE¼ 0.77� 0.09) predictive per-
formance in terms of visual appreciation.
Again, the results of the correlation ana-
lysis were confirmed by those of the MDS
analysis.

Several possible contributors to the lower
performance can be identified. First, there is
the obvious mismatch between the Rp sample
set (red-to-yellow samples) and the experi-
ment object sets. Although, care was taken to
avoid this type of bias, it could not be avoided
in the case of Sanders’ Rp, as this time it was
the metric sample set itself that was lacking
full hue coverage. Second, the outdated
Judd-type chromatic transform also had a
major impact on the very poor performance.
Updating it to the CAT02 chromatic adapta-
tion transform increased the correlation
coefficient of the Rp metric to
rc� 1SE¼�0.16� 0.17. Other possible con-
tributors to the poor performance are the use
of the perceptually non-uniform CIE xy
chromaticity diagram and the CIE 28 stand-
ard observer. The latter is known to be in
error in the blue part of the spectrum, which
would cause a considerable difference
between the instrumental and visual colour
matches for many of the LED light sources
used in the visual experiments.75

In contrast to Sanders’ Rp, Judd’s flattery
index Rf and Thornton’s CPI have a much
better correlation with visual appreciation.
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As discussed, both are very similar, with the
major difference being the magnitude of the
preferred colour shift used to adjust the chro-
maticity of the test samples under the refer-
ence illuminant. Indeed using the full
magnitude of the preferred shift in the Rf

calculation brings the correlation up to a
value of rc� 1SE¼ 0.79� 0.07, which is even
slightly better than Thornton’s CPI. The
slight increase compared to the CPI is most
likely due to the extra two reflectance samples
(foliage and skin colour): Setting the weight-
ings in the Rf calculation to 1 and keeping the
full preferred colour shift, as is the case in the
CPI calculation, further increases the correl-
ation to rc� 1SE¼ 0.81� 0.08.

The outdated Judd translational chromatic
adaptation transform also had a negative
impact on performance. Updating it to the
CAT02 transform improved the correlation
of the Rf and CPI metrics to
respectively: rc� 1SE¼ 0.59� 0.12 and
rc� 1SE¼ 0.82� 0.08; although the effect is
not as large as for Sanders’ Rp. This can be
understood by considering the magnitude of
the adaptive shift required in the metric
calculations. In the Rp calculation the refer-
ence illuminant is either illuminant B or C,
while the Rf and CPI metrics use reference
illuminants that have the same CCT as the
test source. The adaptive shifts typically
required, and hence the error made by the
outdated Judd translation chromatic adapta-
tion transform, will therefore be much smaller
for the latter than the former.

Finally, the lower correlations of the Rf

and CPI might have in part resulted from
ignoring the difference in chroma and hue
tolerances by using a Euclidean colour differ-
ence equation to estimate the difference in
perceived appreciation. Note that the memory
Rm index did take these into account, which
together with the use of a good chromatic
adaptation transform and uniform colour
space might account for the Rm’s better
performance.

From Figure 4 and Table 1, it is clear that
Thornton’s CPI index has a performance
comparable to that of the gamut- and
chroma-enhancement based metrics (Qp, Qg,
FCI and GAI) and to the mixed GAIRa

metric. This was confirmed by the CI-test
(see Table 2) and largely by the MDS test
which showed slightly lower performance, i.e.
larger metric-rating distances, for the FCI and
GAI metrics.

In agreement with the discussion on the
interpretation of the first axis of the MDS
analysis, it can also be observed that the
predictive performance for visual appreci-
ation tends to drop the less emphasis a
metric places on chroma enhancement or
gamut expansion. For example, the Judd
flattery index, which uses only one-fifth of
the preferred colour shift (primarily directed
towards increased saturation), tends to have a
lower performance compared to the Qp, Qg,
FCI, GAI and GAIRa metrics. On the other
hand, compared to the fidelity metrics, the Rf

performance tends to be higher. As fidelity
metrics do not and are not intended to
emphasize chroma enhancement – except
perhaps implicitly through the use of satu-
rated reflectance samples – the former results
are again consistent with the hypothesized
role of chroma enhancement emphasis on
predictive performance.

As a group, the fidelity metrics had the
lowest performance of all (with the exception
of Sanders’ Rp). The performance of the CIE
Ra and CQS Qf were significantly lower than
that of all the other metrics.

Finally, the role of chroma enhancement
emphasis on predictive performance is also
clearly illustrated by the four CQS indices,
which show a statistically significant increase
in performance as the reward for chroma
enhancement in the index calculation is
increased: rQf5rQa5rQp� rQg. Obviously,
there will be an upper limit to the visually
allowed chroma enhancement, as oversatura-
tion is known to have a negative impact on
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perceived colour quality. Regarding the
gamut-expansion (FCI, GAI and Qg) and
chroma enhancement (Qa, Qp and GAIRa)
based metrics, the former fail to account for
such a limit. On the other hand, the latter and
metrics such as Rp, Rf, CPI, Rm and GAIRa

do include such a limit: either by setting up a
reference chromaticity with increased satur-
ation (e.g. Rp, Rf, CPI and Rm), or by
explicitly setting a limit to the allowed
chroma enhancement (e.g. Qa and Qp), or by
the implicit counterbalance introduced by the
changes in hue that are generally associated
with increases in saturation (all former met-
rics, but especially GAIRa).

68 In fact, the
GAIRa counter-balances increase in gamut
area (cfr. GAI) with full colour differences
with respect to unsaturated reference chro-
maticities (cfr. CIE Ra). Therefore, increases
in chroma or gamut are always associated
with increases in colour difference.

An estimate of the upper limit for visually
allowed chroma enhancement was obtained
by optimizing the maximum allowed chroma
enhancement in the CQS metric, �C�ab,max,
for maximum Qp performance. A maximum
correlation (rc,optimum¼ 0.85) was found for
�C�ab,max¼ 20, which is twice the original
value of 10 as set in CQS v9.0.

3.3.2. Naturalness
With the exception of Sanders’ Rp index, all

memory or preferred colour based metrics
had approximately the same moderate correl-
ation to naturalness (rc� 0.71) as evaluated
by the test subjects in the visual experiments.
However, it should be noted that the MDS
analysis did show some differences for these
metrics. Although, the correlation of Sanders’
Rp had increased for naturalness, it was still
very poor (rc� 1SE¼ 0.16� 0.21). Obviously,
sample mismatch and an outdated chromatic
adaptation transform will have had a similar
negative impact on predictive ability as
before, so these will not be discussed further.

Compared to the results for visual appre-
ciation, the performance of the memory Rm

(rc� 1SE¼ 0.71� 0.11) and the CPI
(rc� 1SE¼ 0.70� 0.09) had decreased, while
Judd’s flattery index had increased
(rc� 1SE¼ 0.72� 0.08). The decrease of the
former two can be explained by the idealized
(and more chromatic) nature of memory and
preferred colours. The increase of Judd’s
flattery index Rf can be explained by its use
of less saturated reference chromaticities (Rf

uses only one-fifth of the preferred colour
shift).

That visual ratings on naturalness correlate
better with the predictions of metrics that
employ less saturated reference chromaticities
is also indicated by the increase from low to
moderate performance of the fidelity metrics
CIE Ra (rc� 1SE¼ 0.60� 0.12), CRI2012
Ra,2012 (rc� 1SE¼ 0.61� 0.08) and CQS Qf

(rc� 1SE¼ 0.63� 0.12). The significantly
higher correlation still of the CQS Qa

(rc� 1SE¼ 0.70� 0.13) and Judd’s flattery
index Rf (rc� 1SE¼ 0.72� 0.11) also show
that the reference chromaticities supplied by
illuminating a set of samples with a black-
body radiator or daylight phase are not the
most optimal in terms of naturalness (and
especially not for visual appreciation).
Naturalness seems to require a slight increase
in saturation, in agreement with the inter-
pretation of the first axis of the MDS
analysis. As already argued in Davis and
Ohno,68 at the illumination level of indoor
lighting chroma-enhanced rendering of object
colours would make objects appear more like
they would when illuminated by daylight
(where the Hunt effect would lead to an
increased object saturation). Obviously, there
is a limit to the allowed saturation increase
before performance starts to decrease, and as
suggested by the discussion earlier and the
drop in performance of the CPI, Rm and the
strict gamut-/chroma-enhancement metrics
(Qp, Qg, FCI and GAI) the limit for natural-
ness is smaller than that for visual appreci-
ation. An estimate of the maximum visually
allowed chroma enhancenment was obtained
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as before: rc,optimum¼ 0.82 for�C�ab,max¼ 7.5
which is slightly smaller than the original
value of 10 as set in CQS v9.0 and about three
times smaller than that obtained for visual
appreciation.

According to both the correlation meta-
analysis and the MDS analysis, the metric
that performed best for naturalness was
GAIRa (rc� 1SE¼ 0.94� 0.09). This metric
is calculated as the geometric mean of the CIE
Ra and the GAI metrics, thereby striking a
balance between colour rendering fidelity and
gamut expansion, without however placing
boundary values on the individual metric
scores as proposed by Freyssinier-Nova and
Rea70 in their statement that high values for
both metrics (Ra� 80 and 80	GAI	 100)
ensure ‘‘positive subjective impressions of nat-
uralness’’. Although categorization makes
decisions regarding the level of colour rendi-
tion easy, it is not what correlation analysis –
which seeks to quantify the strength of the
relationship between variables – is about. In
addition, the requirement that the GAI should
have values between 80 and 100 may be too
strict, as there are quite a few light sources
with good colour rendition that have GAI
values larger than 100.51

4. Conclusions

Four colour rendition metrics based on
memory or preferred colours are discussed
(in chronological order): Sanders’ preferred
colour metric Rp, Judd’s flattery index Rf,
Thornton CPI and Smet’s MCRI Rm.
Sanders’ and Smet’s proposals are what can
be termed pure memory/preferred colour
rendition metrics, i.e. they use the actual
memory or preferred colours in their index
calculation. In addition, both account for the
inherent psychophysical differences between
chroma and hue tolerances by using a
Mahalanobis distance, instead of the
common Euclidean distance used in most
colour difference equations. Judd’s flattery

index Rf and Thornton’s CPI, on the other
hand, compare the chromaticity of a number
of Munsell samples illuminated by the test
light source and the reference illuminant. The
chromaticity under the reference illuminant is
corrected by a preferred colour shift calcu-
lated by Judd based on memory and preferred
colour data obtained in psychophysical
experiments. While Thornton kept the ori-
ginal magnitude of the calculated preferred
colour shift, Judd’s flattery index rescaled it
to one-fifth of its original length. Colour
differences were calculated using a Euclidean
distance metric, ignoring differences in
chroma and hue tolerance in the assessment
of the colour rendition of a light source.

The performance of these metrics was
investigated, along with that of several other
colour rendition metrics using psychophysical
data on visual appreciation and naturalness
obtained from, respectively, 21 and 15 experi-
ments described in literature. Performance
was analysed as the weighted average
artefact-corrected Spearman correlation coef-
ficient determined according to the method of
Hunter and Schmidt71 and an MDS based
metric-rating distance.

Regarding visual appreciation, the Rm

metric was found to correlate highly and
significantly better than all other metrics. The
good and best performance of the Rm metric
was also confirmed by the results of the MDS
analysis.

The other preferred colour-based metrics –
Sanders’ Rp, Judd’s flattery index Rf and
Thornton CPI – showed, respectively, very
poor, poor-to-moderate and moderate-to-
good predictive performance in terms of
visual appreciation. Possible reasons for the
lower performance of these three metrics were
identified as being: The mismatch between
metric sample set and the experiment objects
set in the case of Sanders’ Rp, the use of only
one-fifth of the preferred colour shift in
Judd’s flattery index, the use of a non-
uniform colour space and outdated chromatic
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adaptation transform, and the use of a
Euclidean colour difference equation that
does not take differences in chroma and hue
tolerance into account.

The chroma enhancement based metrics
(Qp, Qg, GAI, FCI and the mixed GAIRa) had
moderate to good performance, comparable
to that of the CPI.

The fidelity-type metrics had the worst
performance (with the exception of Sanders’
Rp), indicating the CIE defined reference
illuminants are not optimal for predicting
visual appreciation. The poor performance of
the fidelity-type metrics is not surprising as
they were never intended to predict these
subjective aspects of colour rendition. Their
only goal is to provide an objective measure
to compare colour rendering (fidelity) of
different light sources.

Considering the calculation details and
performance of each metric, it was concluded
that the more emphasis a metric places on
chroma enhancement (or gamut expansion)
the better its predictive performance in terms
of visual appreciation tends to be. This is
obviously only valid up to a certain limit, as
oversaturation will have a negative impact.

For naturalness, with the exception of
Sanders’ Rp, all memory/preferred colour-
based metrics performed approximately
equally moderately according to the correl-
ation analysis. However, the MDS analysis
did suggest there were differences in perform-
ance: Rp5Rm5CPI5Rf.

The metric that performed best was the
GAIRa. The metric is calculated as the geo-
metric mean of the GAI and the CIE Ra

values. No significant difference could be
found between the GAIRa metric and Judd’s
flattery index and the strict gamut-/chroma-
enhancement metrics.

Compared to their performance for visual
appreciation, the performance of the fidelity-
type metrics for naturalness had increased
from poor to moderate. That of the Qa metric
and Rf metric had increased even higher,

while the Rm, CPI and the Qp had all
decreased to a rather moderate performance.
The pure gamut area-based metrics, such as
the GAI, Qg and FCI had decreased to
substantially lower performance levels.

Considering the observed trends in per-
formance and the emphasis each metric places
on gamut expansion or chroma enhancement,
it was concluded that naturalness requires
higher object saturation levels than the ones
provided by the CIE reference illuminants in
fidelity-type metrics, but not as high as for
visual appreciation.
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